Background: Provider implicit bias could negatively affect the doctor-patient communication. In this study, the authors measured implicit bias training in pediatric oncology providers and exposure implicit association test (IATs). They then assessed the association between IATs to race and socioeconomic status (SES) and the recommendation for the registration of clinical trials.
Methods: A prospective multisite study conducted to measure implicit bias among providers of oncology at the Hospital St. Jude Children’s Research and affiliated clinics. An IAT is used to assess the bias in the domain of race and SES. sketches of use cases to determine the relationship between bias and provider recommendation for trial registration. Data were analyzed using Student’s t test or Wilcoxon test for the comparison and the Jonckheere-Terpstra test is used for the association.
Results: Of the 105 number of the participants, 95 (90%) did not take an IAT and 97 (92%) do not have an implicit bias training before. A great effect was found for (bias towards) high SES (Cohen d, 1.93) and the European American race (Cohen d, 0.96). The majority of participants (90%) had a score sketch of 3 or 4, which indicates the recommendation for trial enrollment for part or the entire sketch. IAT and vignette scores did not significantly differ between providers on the Hospital St. Jude Children’s Research or affiliated clinics. No relationship was found between IAT and score sketches for the race (P = 0.58) or SES (P = 0.82).
Conclusions: The authors noted deficiencies prior exposure bias implicit self-assessment and training. Although providers show a preference for high SES and racial America Europe, this does not seem to affect the recommendation for registration of clinical trials that assessed by the sketch.
Through the years the ability to suppress angiogenesis has been utilized in the field of oncology. This efficiency is well documented and indications continue to grow, although the impact is often somewhat limited, as we argue in this review. Recent evidence suggests that angiogenesis inhibition may be a clinically meaningful treatment through several channels but less than the limit biomarker individual approach. The tumor microenvironment are anti-immune and anti-angiogenic drug combinations and immunotherapy has demonstrated impressive results and can change therapy in the years to come.
COVID-19 Pandemic Impact on Student and Resident Teaching and Training in Surgical Oncology
The COVID 19th pandemic has greatly changed the personal and professional interactions and behaviors worldwide. The effects of this pandemic and the measures taken have changed our health system, which in turn has affected the surgical medical education and training. In the face of constant interruption of surgical education and training during the pandemic outbreak, structured and innovative concepts and customized curriculum that is important to ensure the high quality of medical care. While efforts were made to prevent the virus from spreading, it is important to analyze and assess the impact of this crisis on medical education, surgical training and teaching in general and certainly in the field of surgical oncology.
Against this background, in this paper we introduce a practical and creative recommendations for the continuity of students and residents training and medical and surgical teaching. It includes a virtual curriculum of education, skill development classes, video-based feedback and simulation in the field of oncology surgical specialties. In conclusion, the effect COVID 19 Surgical Training and Teaching, certainly in the field of Surgical Oncology, challenging.
Multiomic General Oncology Database Integration in Bioconductor
Objective: Investigation of the molecular basis for the development, progress and treatment of cancer are increasingly using complementary genomic tests to collect data multiomic, but the management and analysis of the data is still complex. The cBioPortal for genomics of cancer today provides data multiomic of> 260 general studies, including The Cancer Genome Atlas (TCGA) set of data, but the integration of various types of data the remains challenging and error prone to computational methods and tools to use these resources , The latest advances in data infrastructure in Bioconductor project enables new and powerful approach to creating this integrated representation multiomic, pan-cancer database
.
Methods: We provide a set of packages R / Bioconductor to work with legacy data and data TCGA cBioPortal, with special consideration for the loading time; efficient representation in and out of memory; Analytics platform; and integrative framework, as MultiAssayExperiment.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: A human-specific splicing variant of vascular endothelial growth factor (VEGF) receptor 1 (Flt1) was discovered, producing a soluble receptor (designated sFlt1-14) that is qualitatively different from the previously described soluble receptor (sFlt1) and functioning as a potent VEGF inhibitor. sFlt1-14 is generated in a cell type-specific fashion, primarily in non-endothelial cells. Notably, in vascular smooth muscle cells, all Flt1 messenger RNA is converted to sFlt1-14, whereas endothelial cells of the same human vessel express sFlt1. sFlt1-14 expression by vascular smooth muscle cells is dynamically regulated as evidenced by its upregulation on coculture with endothelial cells or by direct exposure to VEGF. Increased production of soluble VEGF receptors during pregnancy is entirely attributable to induced expression of placental sFlt1-14 starting by the end of the first trimester. Expression is dramatically elevated in the placenta of women with preeclampsia, specifically induced in abnormal clusters of degenerative syncytiotrophoblasts known as syncytial knots, where it may undergo further messenger RNA editing. sFlt1-14 is the predominant VEGF-inhibiting protein produced by the preeclamptic placenta, accumulates in the circulation, and hence is capable of neutralizing VEGF in distant organs affected in preeclampsia. Together, these findings revealed a new natural VEGF inhibitor that has evolved in humans, possibly to protect non-endothelial cells from adverse VEGF signaling. Furthermore, the study uncovered the identity of a VEGF-blocking protein implicated in preeclampsia.
Human VEGFR1-14/Flt1-14, soluble Recombinant Protein
Description: A human-specific splicing variant of vascular endothelial growth factor (VEGF) receptor 1 (Flt1) was discovered, producing a soluble receptor (designated sFlt1-14) that is qualitatively different from the previously described soluble receptor (sFlt1) and functioning as a potent VEGF inhibitor. sFlt1-14 is generated in a cell type-specific fashion, primarily in non-endothelial cells. Notably, in vascular smooth muscle cells, all Flt1 messenger RNA is converted to sFlt1-14, whereas endothelial cells of the same human vessel express sFlt1. sFlt1-14 expression by vascular smooth muscle cells is dynamically regulated as evidenced by its upregulation on coculture with endothelial cells or by direct exposure to VEGF. Increased production of soluble VEGF receptors during pregnancy is entirely attributable to induced expression of placental sFlt1-14 starting by the end of the first trimester. Expression is dramatically elevated in the placenta of women with preeclampsia, specifically induced in abnormal clusters of degenerative syncytiotrophoblasts known as syncytial knots, where it may undergo further messenger RNA editing. sFlt1-14 is the predominant VEGF-inhibiting protein produced by the preeclamptic placenta, accumulates in the circulation, and hence is capable of neutralizing VEGF in distant organs affected in preeclampsia. Together, these findings revealed a new natural VEGF inhibitor that has evolved in humans, possibly to protect non-endothelial cells from adverse VEGF signaling. Furthermore, the study uncovered the identity of a VEGF-blocking protein implicated in preeclampsia.
Description: VEGF R1 (Flt-1), VEGF R2 (KDR/Flk-1), and VEGF R3 (Flt-4) belong to the class III subfamily of receptor tyrosine kinases (RTKs). All three receptors contain seven immunoglobulin-like repeats in their extracellular domain and kinase insert domains in their intracellular region. They are best known for regulating VEGF family-mediated vasculogenesis, angiogenesis, and lymphangiogenesis. They are also mediators of neurotrophic activity and regulators of hematopoietic development. Human VEGF R2 is thought to be the primary inducer of VEGF-mediated blood vessel growth, while VEGF R3 plays a significant role in VEGF-C and VEGF-D-mediated lymphangiogenesis.
Description: The antibody recognizes solely the endogenous soluble form of mouse vascular endothelial growth factor receptor 2, alos known as CD309, VEGFR2, KDR, protein tyrosine kinase receptor flk-1, and fetal liver kinase-1. The endogenous soluble mouse esFlk-1 generated by alternative splicing consists of the first 6 Ig-like loops followed by the unique C-terminal end: GMEASLGDRIAMP. Flk-1 is a member of the tyrosine protein kinase family, sub-family CSF-1/PDGF, that contains a single pass transmembrane receptor with a protein kinase domain and seven immunoglobulin-like domains in the extracellular region. Flk-1 is expressed at high levels in adult heart, lung, kidney, brain, and skeletal muscle; other tissues express at lower levels. Flk-1 is a receptor for VEGF-A or fully processed VEGF-C; ligand binding plays a key role in vascular development and vascular permeability.
Description: Quantitativesandwich ELISA kit for measuring Human vascular endothelial cell growth factor receptor 1 (VEGFR-1/Flt1) in samples from serum, plasma, tissue homogenates. A new trial version of the kit, which allows you to test the kit in your application at a reasonable price.
Description: Quantitativesandwich ELISA kit for measuring Human vascular endothelial cell growth factor receptor 1 (VEGFR-1/Flt1) in samples from serum, plasma, tissue homogenates. Now available in a cost efficient pack of 5 plates of 96 wells each, conveniently packed along with the other reagents in 5 separate kits.
Human Vascuoar endothelial cell growth factor receptor 1,VEGFR-1/Flt1 ELISA kit
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Endothelial cells express three different vascular endothelial growth factor (VEGF) receptors, belonging to the family of receptor tyrosine kinases (RTKs). They are named VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), VEGFR-3 (Flt-4). Their expression is almost exclusively restricted to endothelial cells, but VEGFR-1 can also be found on monocytes, dendritic cells and on trophoblast cells. The flt-1 gene was first described in 1990. The receptor contains seven immunoglobulin-like extracellular domains, a single transmembrane region and an intracellular splited tyrosine kinase domain. Compared to VEGFR-2 the Flt-1 receptor has a higher affinity for VEGF but a weaker signaling activity. VEGFR-1 thus leads not to proliferation of endothelial cells, but mediates signals for differentiation. Interestingly a naturally occuring soluble variant of VEGFR-1 (sVEGFR-1) was found in HUVEC supernatants in 1996, which is generated by alternative splicing of the flt-1 mRNA.
Description: Vascular Endothelial Growth Factor (VEGF or VEGF-A) family members are major mediators of vasculogenesis and angiogenesis. Specifically, biological activities attributed to VEGFs include: mitogenic activity on endothelial cells, increased permeability of endothelial cells to proteins, stimulation of monocyte migration across endothelial cells and angiogenic activity. Three VEGF family receptors have been described: Flt-1 (fms-like tyrosine kinase) also known as VEGF R1, KDR (kinase-insert domain-containing receptor) also known as Flk-1 and VEGF R2, and Flt-4 also known as VEGF R3. The three receptors contain seven extracellular immunoglobulin-like domains and share substantial sequence homology. In addition, neuropilin-1, a neuronal receptor, also acts as a co-receptor for VEGF when expressed on vascular endothelial cells, endothelial cell progenitors and monocytes. VEGF R1 is expressed primarily on endothelial cells but is also found on human peripheral blood monocytes. Through its endothelial mitogenic and hyperpermeability activities, VEGF influences a variety of immune functions related to wound healing and blood protein traffic across endothelial barriers.
Methylation large sets of data provided via out-of-memory representation of the data to provide a responsive loading and analysis capabilities on machines with limited memory.
Results: We developed curatedTCGAData and cBioPortalData R / Bioconductor package to provide an integrated set of data from TCGA multiomic cBioPortal legacy database and web application programming interface using data structures MultiAssayExperiment. This suite of tools provides coordination experimental tests vary with clinicopathological the data with minimal data management burden, as demonstrated through several analysis multiomic pan-cancer and greatly simplified.
Conclusion: This representation allows analysts and developers integrated tools to apply statistical methods and a general plan for comprehensive multiomic data through user-friendly command and documented examples.